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Table II. First-Order Rate Constants for the Thermal Cis —• Trans 
Isomerization of Azobenzene at Various Pressures 
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Figure 1. The inner coordination sphere of OsCl2(CCl2)(CO)(PPh3)2 

by a conventional sampling technique. The small pressure ef­
fects observed also support the above suggestion since no major 
polarity change is expected during activation for this com­
pound. 

Further experiments with other solvents and with other 
azobenzenes are in progress. 
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Carbonyl, Thiocarbonyl, Selenocarbonyl, 
and Tellurocarbonyl Complexes Derived from 
a Dichlorocarbene Complex of Osmium 

Sir: 

The successful coordination of the very reactive molecules 
carbon monosulfide1 and carbon monoselenide2 in transi­
tion-metal complexes suggests that it may also be possible to 
stabilize, through coordination, the unknown molecule carbon 
monotelluride. Most synthetic routes to carbon monosulfide 
(or thiocarbonyl) complexes and carbon monoselenide (or 
selenocarbonyl) complexes involve the use of carbon disulfide 
(or thiophosgene) and carbon diselenide, respectively. Since 
the tellurium analogues of these starting materials, i.e., carbon 
ditelluride and tellurophosgene are also unknown molecules, 
a new approach was clearly necessary for tellurocarbonyl 
complexes and this paper describes such an approach which 
depends upon an unusual dichlorocarbene complex of osmium, 
OsCl2(CCl2)(CO)(PPh3)2. 

It is surprising that, although dichlorocarbene was one of 
the first carbenes to be recognized, no transition-metal complex 
of this species was reported until 1977.3 Fe(TPP)(CCl2)(H2O) 
results from the reaction of mwo-tetraphenylporphyrinato-
iron(II) [Fe(TPP)] with carbon tetrachloride in the presence 

of an excess of reducing agent and the thorough character­
ization of this molecule includes an X-ray crystal structure 
determination.4 This is apparently the only dichlorocarbene 
complex to have been described, although various monochlo-
rocarbene complexes are known.5 Our synthesis of an osmium 
dichlorocarbene complex was a development of earlier work 
in which we had shown that reaction between OsHCl(CO)-
(PPh3)3 and a diorganomercury compound led to a coordina-
tively unsaturated organo derivative of osmium(II),6 vis., 

OsHCl(CO)(PPh3)3 + HgR2 OsRCl(CO)(PPh3)2 

+ RH + HgI + PPh3 

By using this reaction to transfer a trichloromethyl group to 
osmium, we anticipated that rearrangement of the expected 
coordinatively unsaturated trichloromethyl intermediate could 
lead to a dichlorocarbene complex. 

In fact, reaction between OsHCl(CO)(PPh3)3 and 
Hg(CCl 3) 2

7 proceeded to give orange crystals of 
OsCl2(CCl2)(CO)(PPh3)2 (I) in >80% yield.8 The dichloro-
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I 
carbene ligand gives rise to IR bands at 880 (s) and 780 and 
770 (m) c m " 1 which we assign to H C - C l ) . F e ( T P P ) ( C C l 2 ) 
exhibits vC-a at 872 cm" 1 . 4 The 13C N M R spectrum (CDCl3 , 
SiMe4) shows, in addition to the signals arising from tri-
phenylphosphine, a peak at 223.2 ppm which is also very close 
to the signal observed for the carbene carbon in F e ( T P P ) -
(CCl 2 ) . 3 An X-ray structure determination fully confirms the 
carbene formulation and the s t ruc ture is shown in Figure 
I .9 

I reacts rapidly with pr imary amines, R N H 2 (R = C H 3 , 
/2-C4H9, p - to ly l ) , to form the isocyanide complexes 
O s C l 2 ( C N R ) ( C O ) ( P P h 3 ) 2 and slowly with water to form 
OsCl 2 (CO) 2 (PPl i3 )2 . 1 0 I appears , therefore, to be a perfect 
precursor of thiocarbonyl, selenocarbonyl, and tellurocarbonyl 
complexes through reaction with S H - , S e H - , 1 1 and T e H - , 1 2 

respectively. 
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From this reaction thiocarbonyl and selenocarbonyl deriv­
atives resulted in high yield, but the tellurocarbonyl was iso­
lated in only 30% yield after chromatography.13 This reduced 
yield is probably associated with the difficulty of preparing 
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Table I. IR Data" for Osmium Complexes* 

compound KCO) KCX) 

OsCl2(CCl2)(CO)(PPh3)2 2012,1990 880,780,770 
O S C I 2 ( C N C H 3 ) ( C O ) - 1956 2200 

(PPh3)2 
OsCl2(CO)2(PPh3)2 2040, 1975 
OsCl2(CS)(CO)(PPh3)2 2040,2030,2020 1315 
OsCl2(CSe)(CO)(PPh3)2 2036,2018 1156 
OsCl2(CTe)(CO)(PPh3)2 2040 H)46 

" In reciprocal centimeters. Measured as Nujol mulls. * All com­
pounds have satisfactory C and H analyses. 

pure TeH - . The tellurocarbonyl complex forms orange crystals 
mp 221-223 0 C, which are air stable. The corresponding 
carbonyl, thiocarbonyl, and selenocarbonyl are almost color­
less. All the compounds show an exceptionally intense infrared 
absorption associated with i^cx) (see Table I) dropping from 
1315 cm"1 for C(cs) to 1046 cm - 1 for V(CTe)- "(CO) remains 
almost constant throughout the series of compounds. 

The stereochemistry of all derivatives is probably as depicted 
above and this has been confirmed for OsCl2(CS)(CO)(PPh3)2 

by X-ray crystal structure analysis.14 Since this is the first 
complete series of chalcocarbonyl compounds to be described, 
crystal structure determinations of all members of the series 
are planned to help evaluate the bonding characteristics of each 
ligand. 

The dichlorocarbene complex promises to have diverse 
synthetic applications, and the further reactions of I are being 
studied. 
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Correlation of Circularly Polarized Luminescence 
Induced in Tb(dpm)3 by Chiral Solvents with the 
Absolute Configuration of Those Solvents 

Sir: 

The determination of the absolute configuration of a chiral 
substance is a very important part of the characterization of 
that molecule. Considerable success has been attained by 
Nakanishi and Dillon1 in absolute configurational studies of 
vicinal glycols with metal derivatives of ^3-diketones. These 
workers were able to correlate the sign of circular dichroism 
peaks appearing ~300 nm with the absolute configurations of 
numerous glycols and amino alcohols. Other workers have 
examined the circular dichroism induced in the 7Fo —* 5Di 
absorption of Eu(III) when Eu(fod)3 (fod = 6,6,7,7,8,8,8-
heptafluoro-2,2-dimethyloctane-3,5-dione) adducts with chiral 
alcohols were prepared.2 These methods are attractive in that 
the experiments are easy to carry out and the results usually 
adhere to the rules stated by the authors. 

When a chiral molecule is also capable of luminescence after 
being excited by UV light, it is often possible to observe the 
excited-state analogue of circular dichroism, circularly pola­
rized luminescence (CPL).3 We have observed earlier that 
CPL could be induced in achiral Eu(III) /3-diketonate chelates 
upon complexation with optically active solvents,4 although 
we did not attempt to draw correlations between the configu­
ration of the chiral solvent and the signs of the CPL. In the 
present work, the sign of the CPL induced in Tb(dpm)3 (dpm 
= 2,2,6,6-tetramethylheptane-3,5-dione) is correlated with 
the absolute configuration of several chiral solvents.5 

When Tb(dpm)3 is dissolved in (/?)-a-phenethylamine, 
strong Tb(III) luminescence is observed at 545 nm, corre­
sponding to the 5D4 —• 7Fs transition. This transition is par­
tially circularly polarized, and the particular CPL line shape 
associated with the CPL induced by the R enantiomer is shown 
in Figure I.6 Similar line shapes (although not magnitudes) 
were obtained when the R isomers of 2-aminobutane, 2-ami-
noheptane, a-phenethyl alcohol, and propylene glycol were 
used as solvents for the Tb(dpm)3. Two CPL extrema were 
observed, and in general, when the ./? enantiomer of the chiral 
solvent was used, the negative CPL peak was the one located 
at 544 nm and the positive peak was found at 549 nm. When 
the S enantiomer was used in place of the ./?, the CPL peaks 
occurred at the same wavelength, had the same intensity, but 
were of opposite sign. 

The CPL spectra of other Tb(III) luminescent bands was 
also recorded, corresponding to the 5D4 —• 7F6,7F4, and 7 F 3 

transitions, but the CPL of these was at least an order of 
magnitude weaker than the CPL associated with the 5D4 —•• 
7Fs emission. An attempt to compare the CPL of the 5D4 —• 
7 F 6 emission with the induced circular dichroism (CD) of the 
corresponding 7F6 -* 5D4 proved unsuccessful owing to the 
extremely low magnitude of optical activity found with both 
methods. CD measurements were not pursued further since 
the low signal-to-noise ratios obtained precluded effective 
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